Theoretical Study on Adduct Formations of PD(II) and NI(II) Complexes With an Engineered Oligonucleotide

نویسندگان

  • Myrlene Jeudy
  • Beatriz H. Cardelino
چکیده

Metal-based anticancer drugs containing Pt (II) (e.g., cisplatin) are among the most effective drugs used in chemotherapy. These agents interfere with DNA’s functions and inhibit its ability to divide, thus destroying cancer cells. However, studies have shown that these types of drugs show limitations because of their lack of specificity in destroying cells. Thus, it is of interest to investigate other candidates as possible anticancer drugs. In this investigation, the binding effects of metal complexes (analogue to cisplatin) with an engineered oligonucleotide were analyzed using theoretical approaches. The metal complexes considered contained the transition metals Pd(II) and Ni(II), with different halide ligands, as well as the NH3 and NH2 substituents. The selected oligonucleotide was a DNA octamer duplex, engineered in 1995, with its structure determined by high-resolution NMR. The theoretical approach consisted of the hybrid computational procedure called ONIOM. Within the ONIOM partition scheme, the “active” parts of the systems (where chemical bonds break and form) were treated at the quantum mechanical level using hybrid density exchange functionals. The “real” system was treated using molecular mechanics with universal force field parameters. No atoms were included as “link atoms” between the two layers. The heat of reactions for the binding processes of these adduct formations was calculated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Density Functional Theory Investigation of d8 Transition Metal(II) (Ni, Pd, Pt) Chloride Complexes of Some Vic-dioximes Derivatives

Herein, a theoretical study on the stability of some vic-dioxime complexes of Ni(II), Pd(II) and Pt(II) in gas and aqueous phases is reported. The DFT/M06/SDD and DFT/M06/6-31G+(d,p) levels of theory were adopted for the metal ions and for every other element respectively. Structural analyses of investigated complexes have revealed square planar geometries stabilized by two O–H⋯Cl hydrogen bond...

متن کامل

Synthesis, Characterization and Theoretical Studies of a New Macroacyclic Schiff-Base Ligand Containing Piperazine Moiety and Related Mn(II), Cu(II), Ni(II) and Cd(II) Complexes

Four new [NiH2L](ClO4)2 (1), [CuH2L](ClO4)2 (2), [MnH2L](ClO4)2 (3) and [CdH2L](ClO4)2 (4), complexes were prepared by the reaction of a new Schiff base ligand and Cu(II), Ni(II), Mn (II) and Zn (II) metal ions in equemolar ratios. The ligand, H2L was synthesized by reaction of 1, 4- bis (2- formylphenyl) piperazine and ethanol amine and characterized with IR and 1H,13C NMR spectroscopy. All co...

متن کامل

Theoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex

Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...

متن کامل

Synthesis, characterization, antibacterial activity and molecular modeling studies of Ni(II) and Zn(II) complexes with phenylpyridylformamidine ligand

The Ni(II) and Zn(II) complexes with phenylpyridylformamidine (PhPyF) ligand, [Ni(PhPyF)Cl2] and [Zn(PhPyF)Cl2], have been prepared and investigated using different chemical techniques such as elemental analysis, molar conductance, FT-IR, UV-vis spectra and magnetic moment. The obtained chemical analysis data showed the formation of 1:1 (metal: ligand) ratio. The square planar and tetrahedral g...

متن کامل

Theoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex

Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006